İnsanda solunum sistemi burunla başlar. Burnun yapısında kıllar, mukuslu yüzey ve yüzeye yakın kılcal damarlar bulunur. Bu yapılar, solunum esnasında alınan havanın, mikrop ve tozlarının tutulmasını, ısınmasını ve nemlendirilmesini sağlar.
- Solunum havasının alınmasını ve nemlendirilmesini sağlar.
- İçerisinde bulunan kıllar ile solunum havasının temizlenmesini sağlar.
Burun güzel kokulu çiçeklerin ya da iştah açıcı yemeklerin kokularını algılamamızı sağlamanın ötesinde de, çok önemli işlevleri olan bir organımızdır. Soluduğumuz hava ile birlikte havadan aldığı oksijeni vücudumuzun bütün hücrelerine taşıyan kan arasındaki temel bağlantı yollarından biridir. Kısacası burun hem koklama organı, hem de solunum yollarının başlangıcı olarak büyük önem taşır. İki bölümden oluşan burnun içinde "silya" denen tüycükler ve mukus adı verilen bir salgı vardır. Hava burundan içeri girdiğinde bunlarla karşılaşır ve hemen analize tabi tutulur. Havadaki moleküller ayrıştırılarak incelenir ve beyne iletilerek kokunun ne olduğu belirlenir ve ona göre tepki verilir. Bu işlemlerin hepsi sadece 30 saniye gibi çok kısa bir süre içerisinde gerçekleşir.
Burnun içinde aerodinamik açıdan da kusursuz bir tasarım söz konusudur. Hava içeri girdiğinde doğrudan nefes borusuna gitmez. Burun, adeta bir klima gibi çok özel filtre sistemleriyle dışarıdan gelen kirli, sıcak, soğuk ya da nemli havayı akciğerler için hazır hale getirir. Burundaki özel kıvrımlı yapı sayesinde hava burada bir tur dönüş yapar. Böylece burun çeperinde bulunan tüycüklere ve damar ağına daha fazla temas etmiş olur. İşte bu kıvrımlı sistem sayesinde burun günde
Tozlarını ve her türlü zararlı bakterilerini burundaki klima sisteminde bırakan hava, bu işlemden sonra her burun deliğinde üçer tane bulunan kıvrımlı yapıların üstünden geçer. Burundaki tüycüklere takılan yabancı maddeler bu defa da buradaki mukusun antibakteriyel etkisiyle zararsız hale getirilir. Hava bu kıvrımlara çarpınca yön değiştirir ve burun boşluğunun duvarına çarpar. Buraya çarptığında mukus sıvısı içinde tutulur. Solunum havasının yabancı cisimlerden temizlenmesi çok kapsamlı ve çok hassastır. En ufak bir hataya, unutmaya ve atlamaya izin verilmez. Çünkü bir bakterinin ya da zararlı bir cismin akciğer gibi hassas bir organa geçebilmesi, insanın sağlığında olumsuz etkiler oluşturabilir. Ancak herşeye rağmen zararlı cisimlerin burundan geçmeyi başarması ihtimaline karşı, ikinci bir koruma mekanizması daha vardır. Şayet burun boşluğunu geçebilen cisimler olursa, bunlar da solunum yollarında tutulurlar. Burnun içinde temizlenen ve ısısı ayarlanan hava ciğerlerinize gitmek üzere hazırdır. Ciğerlere ulaşmak için takip edilecek yol nefes borusudur.
2-Yutak:
- Burun ve ağız boşluğunun yemek ve soluk borusuna açıldığı bir yol ağzı gibidir.
- Burun ve ağızdan alınan havanın soluk borusuna iletilmesini sağlar.
3-Gırtlak:
- Soluk borusunun üst kısmının genişlemiş bölümüdür.
- İçerisinde konuşmamızı sağlayan ses telleri bulunur.
4-Soluk Borusu:
SOLUNUM SİSTEMLERİ 1. Kaburgalar arasındaki kaslar kasılır. 2. Diyafram kası kasılır,diyafram kası düzleşir. 3. Göğüs boşluğu genişler,göğüs boşluğunun hacmi artar. 4. Akciğerler genişler. 5. Akciğerlerdeki hava basıncı(iç basınç) düşer. 6. Oksijen alveollere kadar gelir. 7.Oksijence zengin hava akciğere dolar. 8. Oksijen kana, karbon dioksit hava keseciklerine geçer. Soluk Verme: Akciğerlerdeki havanın dışarı verilmesidir.Sırasınd a diyafram kası gevşeyerek kubbeleşir ve göğüs boşluğu daralır.Göğüs boşluğunun daralması akciğerleri sıkıştırarak içindeki havanın dışarı çıkmasını sağlar.Soluk verme soluk almaya göre daha pasiftir. 1. Göğüs ve diyafram kasları gevşer,Kaburgalar arası kaslar gevşer 2. Göğüs boşluğunun hacmi azalır,göğüs boşluğu daralır. 3. Akciğer küçülür, iç basınç artar. 4. Kirli hava dışarı atılır. SOLUNUM GAZLARINI TAŞINMASI Kanın en önemli özelliklerinden biri; CO2 ve O2 taşıma kapasitesinin çok yüksek olmasıdır. Taşıyıcı Pigmentler Kana yüksek oranda O2 ve CO2 taşıma kapasitesi sağlar. Hemoglobin en önemlisidir. Hemoglobin O2 ve CO2 ile tepkimeye girerek kanı O2 korumasında rol oynar. Deniz seviyesinde havadaki O2 miktarı yüksektir. Dolayısıyla buralarda yaşayan insanların kanlarındaki hemoglobin çok büyük oranda O le birleşir. Yükseklere çıkıldıkça O2 oranı azalacağından hemoglobinin tutacağı O2 miktarı da düşer. Bu nedenle yükseklere çıkanlarda özel O2 tüpleri bulunur. Oksijenin Taşınması : Hayvanların kanında O2 taşıyıcı solunum pigmentleri bulunur. Pigmentleri şu şekilde sıralayabiliriz: Hemoglobin, Hemosiyanin, Klorokruorin, Hemoeritrin Oksijen kanda oksihemoglobin halinde taşınır. Çok az bir kısmı kan plazmasında çözünmüş olarak taşınır. (% 2 kadar). Akciğerlerde kana geçen O2, alyuvarlardaki hemoglobinle birleşip oksihemoglobini oluşturur. Hb + O2 HbO2 (Oksihemoglobin) Doku kılcallarında hemoglobinden ayrılıp doku sıvısına, oradan da difüzyonla hücrelere geçer. Karbondioksitin Taşınması: Hücrelerde oluşan CO2, doku sıvısına geçip difüzyonla kılcal damarlara geçer. Normal olarak CO2, kanda çok az erir ve az bir kısmı kan plazması ile taşınır. Büyük bir kısmı ise alyuvarlara girer. Alyuvarlarda karbonik anhidraz enziminin katalizlemesi sonucu CO2, su ile birleşerek karbonik asiti oluşturur. Karbonik asit (H2CO3), iyonlaşarak H+ ve HCO3– (bikarbonat) iyonu meydana getirir. H+ iyonu alyuvarlarda hemoglobinle, birleşerek HCO3 iyonları ise plazmada taşınarak akciğer kılcallarına getirilir. Karbonik anhidraz enzimi Akciğer kılcallarında HCO3 iyonları tekrar alyuvarlara girerek H+ iyonları ile birleşir ve H2CO3 (karbonik asit) oluşturur. Yine karbonik anhidraz enziminin etkisiyle, karbonik asit, H2O ve CO2 e ayrışır. Böylece serbest kalan CO2 difüzyonla önce plazmaya, oradan da akciğer alveollerine geçer ve soluk verme ile dışarı atılır. 1. Hücre solunumu ile oluşan CO2 difüzyonla hücreler arası boşluklara buradan da doku kılcallarına geçer. 2. CO’in büyük kısmı alyuvarlara gelip burada karbonik anhidrazin katalizörlüğünde su ile birleşerek karbonik asit oluşur. 3. Karbonik asit (H2CO3) iyonlaşarak H+ ve HCO3- iyonu oluşturur. 4. H+ alyuvarlarda hemoglobinle HCO3- ise plazmada taşınarak akciğer kılcallarına getirilir. 5. Burada HCO3- tekrar alyuvarlara gelerek H+ ile birleşir H2CO3 oluşur. 6. Karbonik anhidrazın etkisiyle H2CO3 , H2O ve CO2 ayrışır. Serbest kalan CO2 difüzyonla önce kan plazmasına oradanda akciğer alveollerine taşınır. 7. Serbest kalan CO2 soluk vermeyle dışarı atılır. CO2 nin çok az bir kısmının hemoglobin ile de taşınabildiği belirtilmektedir. İnsanın soluduğu havada fazla oranda karbon monoksit (CO) bulunursa zehirlenme meydana gelir. Çünkü,Hemoglobin CO ile de kolayca birleşebilir. Ancak O2 gibi kolayca ayrılamaz. Bu durumdaki hemoglobin O2 taşıyamayacağında hücre ve dokular O2’siz kalır. Buna CO zehirlenmesi denir. |
SOLUNUM SİSTEMLERİ Solunum Sistemimizin Sağlığı 1) alveollerde gaz değişimi sayesinde kana oksijen alımı, kandan dışarı karbondioksit atılımını ve dolayısıyla kanın asit-baz dengesini sağlamak, 2) vücuttan dışarı (alkol gibi) toksin maddelerinin atılmasını sağlamak ve 3) akciğerlerin geniş yüzey alanı sayesinde vücudun ısısını kontrol etmek. Bu temel fonksiyonların yanı sıra sistem doğrudan solunum ile ilgili olmayan bazı mekanik, biyokimyasal ve metabolik fonksiyonlar da yürütür. Kısaca bu fonksiyonlar mekanik olarak solunum sisteminin bakteriler gibi harici patojenlere karşı korunması, vücudun sıvı, asit-baz ve iyon dengesinin sağlanması ve vücut için gerekli bazı hayati hormonların ve biyolojik faktörlerin üretilmesi olarak sıralanabilir.Solunum sistemi hastalıkları toksik gazların solunması, enfeksiyöz ajanlar, sigara dumanı ve tütün bağımlılığı gibi birçok etiyoloji ile oluşabilmektedir. Dahası bu patojen etiyolojiler yanlızca yetişkinleri değil henüz solunum sistemi gelişmekte olan fetus ve küçük çocuklarıda doğrudan veya dolaylı yolla etkileyebilmektedir.
Yapılan çalışmalar, akciğer kanseri ile aşağıda bahsedilecek çeşitli olayların ilgili olduğunu göstermiştir; • Çeşitli kanser yapıcı maddeler: Berilyum, Radon ve Asbestoz gibi maddeler akciğer kanseri riskini arttırırlar. • Geçirilmiş tüberküloz (verem) nedbe dokusu üzerinde akciğer kanserleri gelişebilir. • Ailede akciğer kanseri olması akciğer kanserine yakalanma riskini arttırmaktadır. Belirtileri • Öksürük, balgam, kanlı balgam, göğüs ağrısı, akciğer iltihabı, göğüs kafesi içine sıvı birikmesi, ses kısıklığı, tümörün damar basısı nedeniyle göğüs üst bölümünde boyunda ve başta ortaya çıkan ödem (şişlik) • İştahsızlık, zayıflama • Kemiğe yayılım sonrası kemik ağrıları, kanda kalsiyum artışı ve buna bağlı belirtiler • Karaciğere yayılım sonrası, karaciğer büyüklüğü, ağrı ve ateş, • Beyne yayılım sonrası, bazı nörolojik belirtiler ve nöbetler, • Bazı hormonların tümör tarafından anormal salgılanması nedeniyle çeşitli hormonal bozukluklar Akciğerlere etkileri: Sigara içimi hem ana hem küçük hava yollarını, akciğer yüzey hücrelerinin yapı ve fonksiyonlarını bozar, akciğerin bağışıklık sistemini değiştirir. Sigara içimiyle normal akciğer yapısı değişir ve sonuçta kansere dönüşür. Sigara içenlerde kronik öksürük, balgam ve nefes darlığı olur. Sigara içimi KOAH (kronik bronşit, amfizem vb.) gelişimi için esas risk faktörüdür. Solunum yolu enfeksiyonları da sigara içenlerde daha fazladır. Ameliyat sonrası komplikasyonlar ve pnömotoraks da içenlerde daha sıktır. 1964 yılında sigara içimiyle akciğer kanseri arasında nedensel bir ilişki varlığı gösterildi. Daha sonra net ilişkiler tanımlandı. Sigara miktarı ve içilen süre riski belirlemektedir. Günde 1 paket sigara içenlerde akciğer kanserine yakalanma riski 10 kat fazlayken 2 paket içenlerde risk 25 kat artmaktadır. Son yıllarda kadınlardaki sigara içme alışkanlığının artmasıyla kadınlarda da akciğer kanseri görülme riski artmaktadır. Sigara akciğer kanseri dışında ağız, gırtlak, yemek borusu ve mesane kanserine de yol açar, böbrek ve pankreas kanseri gelişimine katkıda bulunur |
SOLUNUM GLİKOLİZ: Her iki tip solunumunda başlangıç reaksiyonlarının aynı olduğunu ve hücrenin stoplazmasında gerçekleştiğini belirtmiştik. Şimdi bu glikoliz reaksiyonlarının nasıl oluştuğunu inceleyelim. Bu reaksiyon dizini enzimlerin yardımıyla ve ortamda yeterli enerji var ise başlayabilir. Bu enerji aktivasyon enerjisi olarak kullanılan enerjidir. yukarıdaki şekilden de takip ederek açıklamaya devam edelim. Glikozun parçalanmaya başlaması için yani glikoliz reaksiyonlarının (dolayısı ile de solunum reaksiyonlarının ) başlaması için stoplazmada bulunan 2 ATP'nin harcanması gerekir. Glikoz molekülüyle tepkimeye giren ATP molekülleri son fosfatlarını glikoza vererek tepkimeden ADP olarak ayrılır. Bu arada Glikoz da Fruktoz'a dönüşür. Şu an aktifleşmiş durumdaki molekülümüz Fruktoz di fosfattır. İkiye ayrılan PGAL ortamda bulunan NAD (Nikotin Amid Dinukleotid) ile reaksiyona girerek bir çift hidrojenini NAD ye verir. NADH2 oluşur. Bu arada PGAL nin bağlarında bir boşluk oluşur. Bu boşluk ortamda bulunan fosfat ile doldurulur. Şimdi Diğer PGAL'de de aynı şeyler olacağı için toplam 4 ATP sentezlenmiş olur. Bundan sonra ortamda oksijen yoksa yada kullanılamıyor ise oksijensiz solunum gerçekleşir. OKSİJENSİZ SOLUNUM a. Glikoliz Evresi b. Kebs Devri c. Oksidatif Fosforilasyon (ETS Olayları) Elektron Taşıma Sistemi (ETS) {ÖNEMLİ NOT: Bazı araştırılmadan ve düşünülmeden yazılmış kaynaklarda (haftalık ÖSS hazırlık dergileri ve dersane kitapları) glikoz molekülünde bulunan enerjinin %40'ı ATP sentezinde kullanılırken %60'ı ısı olarak yayılır denilmektedir. Böyle bir şeyin olması mümkün değildir. O kadar enerjinin ısıya dönüşmesi canlının kömürleşmesine neden olur. Doğrusu bir önceki paragrafta açıklanmıştır } Oksijenli Solunumda Enerjinin Hesaplanması: İnorganik yapıda (CO2 ve H2O) son ürünler oluşur. Mitokondri görev yapar. Canlıların çoğunda gerçekleşir. ETS enzimleri görev yapar. Krebs devri vardır. Fermantasyonun Oksijenli Solunumdan Farkları Glikoz --------> 2CO2 + 2 Etil Alkol + 2ATP (veya Glikoz --------> 2 Laktik asit + 2ATP) O2 kullanılmaz Etil alkol, Laktik asit ve Asetik asit gibi organik ürünler oluşur. 4 ATP üretilir (toplam) Tamamı stoplazmada gerçekleşir. O2'siz solunum yapan az sayıda canlıda ve O2 bulunmadığı veya yetersiz olduğu durumlarda kas hücrelerinde görülür. Fermantasyon ve Oksijenli Solunumun Ortak Yönleri CO2 oluşumu olabilir. ATP oluşur ve ATP harcanır. Glikoz kullanılır. Enzimler görev yapar. Glikoliz gerçekleşir. Oksijenli Solunumda Enerjinin Hesaplanması: Glikoliz reaksiyonlarında 4 ATP (enzim-substrat düzeyinde) Krebs devrinde 2 ATP (enzim-subsrat düzeyinde) ETS de 34 ATP (oksidatif fosforilasyonla) Toplam: 40 ATP Glikolizde harcanan 2 ATP (aktifleşme enerjisi olarak) Net Kazanç: 38 ATP Oksijenli Solunumun Fermantasyondan Farkları Glikoz + 6O2 ------------> 6CO2 + 6H2O + 38ATP O2 kullanılır İnorganik yapıda (CO2 ve H2O) son ürünler oluşur. 40 ATP üretilir (toplam) Mitokondri görev yapar. Canlıların çoğunda gerçekleşir. ETS enzimleri görev yapar. Krebs devri vardır.
alıntıdır. |